Gene Expression Analysis of Pak Choi in Response to Vernalization
نویسندگان
چکیده
Pak choi is a seed vernalization-type plant whose vernalization mechanism is currently unclear. Therefore, it is critical to discover genes related to vernalization and research its functions during vernalization in pak choi. Here, the gene expression profiles in the shoot apex were analyzed after low temperature treatment using high-throughput RNA sequencing technology. The results showed that there are 1,664 and 1,192 differentially expressed genes (DEGs) in pak choi in cold treatment ending and before flower bud differentiation, respectively, including 42 genes that exhibited similar expression trend at both stages. Detailed annotation revealed that the proteins encoded by the DEGs are located in the extracellular region, cell junction and extracellular matrix. These proteins exhibit activity such as antioxidant activity and binding protein/transcription factor activity, and they are involved in signal transduction and the immune system/biological processes. Among the DEGs, Bra014527 was up-regulated in low temperature treatment ending, Bra024097 was up-regulated before flower bud differentiation and Bra035940 was down-regulated at both stages in low temperature-treated shoot apices. Homologues of these genes in A. thaliana, AT3G59790, AT4G30200 and AT5G61150, are involved in flowering and vernalization, suggesting that they take part in the vernalization process in pak choi. Further pathway enrichment analysis revealed that most genes were enriched in the tryptophan metabolism and glucosinolate biosynthesis pathways. However, the functions of tryptophan and glucosinolate in vernalization are not yet clear and require further analysis.
منابع مشابه
Evaluation of gene expression changes of miR156 and miR172 and their targeted genes (AP2 & SPL3; vernalization factors) in two bread wheat (Triticum aestivum L.) cultivars
Floral transition through vernalization has a large influence on cold tolerance and agronomic traits in winter cereals. It is now apparent that in many plants small RNAs play critical roles in determination of the flowering time. There is evidence suggesting that the miR156 and miR172 families play a key role in the flowering transition of plants. In this study, the expression of two temporally ...
متن کاملGenetic Regulation of GA Metabolism during Vernalization, Floral Bud Initiation and Development in Pak Choi (Brassica rapa ssp. chinensis Makino)
Pak choi (Brassica rapa ssp. chinensis Makino) is a representative seed vernalization vegetable and premature bolting in spring can cause significant economic loss. Thus, it is critical to elucidate the mechanism of molecular regulation of vernalization and floral bud initiation to prevent premature bolting. Gibberellin (GA) is the key plant hormone involved in regulating plant development. To ...
متن کاملMolecular evolution, characterization, and expression analysis of SnRK2 gene family in Pak-choi (Brassica rapa ssp. chinensis)
The sucrose non-fermenting 1-related protein kinase 2 (SnRK2) family members are plant-specific serine/threonine kinases that are involved in the plant response to abiotic stress and abscisic acid (ABA)-dependent plant development. Further understanding of the evolutionary history and expression characteristics of these genes will help to elucidate the mechanisms of the stress tolerance in Pak-...
متن کاملIsolation and Functional Characterization of a Floral Repressor, BcMAF1, From Pak-choi (Brassica rapa ssp. Chinensis)
MADS-box genes form a large gene family in plants and are involved in multiple biological processes, such as flowering. However, the regulation mechanism of MADS-box genes in flowering remains unresolved, especially under short-term cold conditions. In the present study, we isolated BcMAF1, a Pak-choi (Brassica rapa ssp. Chinensis) MADS AFFECTING FLOWERING (MAF), as a floral repressor and funct...
متن کاملIsolation of Brassica napus MYC2 gene and analysis of its expression in response to water deficit stress
Manipulation of stress related transcription factors to improve plant stress tolerance is a major goal of current biotechnology researches. MYC2 gene encodes a key stress-related transcription factor involved in Jasmonate (JA) and abscisic acid (ABA) signaling pathways in Arabidopsis. Brassica napus, as a globally important oilseed crop, is a close relative of Arabidopsis. In the present study...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2015